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Partially coherent solitons of variable shape in a slow Kerr-like medium: Exact solutions
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We carry out a theoretical investigation of the properties of partially coherent solitons for media which have
a slow Kerr-like nonlinearity. We find exact solutions of théh-order Manakov equations in a general form.
These describe partially coherent solitdRCS$ and their collisions. In fact, the exact solutions allow us to
analyze important properties of PCSs such as stationary profiles of the spatial beams and effects resulting from
their collisions. In particular, we find, analytically, the number of parameters that control the soliton shape. We
present profiles which are symmetric as well as those which are asymmetric. We also find that collisions allow
the profiles to remain stationary but cause their shapes to cheB@63-651X99)08705-X

PACS numbeps): 42.65.Tg

[. INTRODUCTION useful in producing numerical results, it lacks the generality
required for finding all possible exact solutions, and conse-
The theory of self-action of incoherent light beams is aquently completing analysis of the problem. At this point we
relatively old subjecf1,2]. In the temporal domain, the no- should note that there is a slight difference in the methods
tion of temporal incoherent solitons was introduced by Ha-used to create PCSs in the cases considerg¢ddrily and
segawa in a series of work8-5|, both for plasma waves [13,14. In the first instance, the PCSs are formed by super-
and for nonlinear pulses in multimode fibers. However, themposing a few cw mutually incoherent optical beams. In the
creation of incoherent solitons in optical fibers requires unsecond case, various components of the partially coherent
realistically high pulse energies. Photorefractive materialsolitons are derived from an incoherent light source of finite
are probably the only media for experimental studies of in-extent. However, as has been pointed oujtlié], these two
coherent beams, as they generally exhibit very strong norconfigurations are completely equivalent as far as propaga-
linear effects with extremely low optical powe8—9]. The tion in a slowly responding medium is concerned.
problem of spatial incoherent solitons began to attract a great A diffractionless ray optics limit for treating spatial inco-
deal of attention only recentiid0—16, after an experimental herent solitons has been proposed by Snyder and Mitchell
observation of partially incoherent solitoBCS$ was made [23]. This approach is accurate when the size of the PCS is
by Mitchell et al. [17,18. The experiment was done with much larger than the optical wavelength. In terms of a mul-
photorefractive material with a drift nonlinearity where co- timode waveguide, this limit is valid when the number of
herent photorefractive solitons had been found to exist eamodes goes to infinity, so that the soliton becomes com-
lier [19,20. pletely incoherent. This approach is useful for wide beams.
There are a few different approaches to a theoretical inHowever, all intermediate cases must be covered as well.
vestigation of incoherent solitons. The most direct approach Most of the above-referenced works only showed the ex-
is based on the equation for the field correlation functionistence of symmetric solutions for PCSs. On the other hand,
[1,2]. A description of spatial incoherent solitons, based onin the workg 3] [the case of one dimensiondlD) solitons in
the “coherent density approach,” where the partially coher-Kerr medid and[23] (the case of 3D solitons in media with
ent beam is represented as a superposition of mutually incarbitrary nonlinearityit was pointed out that incoherent soli-
herent components, has been developed by Christodoulidésns may have arbitrary shapes in the regime of complete
et al.[10,11]. For the special case of the logarithmic nonlin- incoherence. This controversy has been resolvel@4n. It
earity, the symmetric solutions can be written in analytichas been shown that a PCS can be considered simultaneously
form [10]. as a self-induced waveguide and also as a multisoliton com-
The description of a partially coherent stationary solitonplex. This complementarity in viewing PCSs greatly en-
as a multimode self-induced waveguifft2—15 has been hances our understanding of PCSs and their properties. In the
especially fruitful. The main idea is that the modes must begresent work, we further develop the theory of PCSs.
self-consistent with the soliton profile, as in the case ofNamely, we showanalytically that PCSs can have profiles
higher-order soliton$§21,22. Then stationary soliton propa- which are variable and which are governed by a finite num-
gation can be obtained by adjusting the amplitudes of variouber of parameters. The number of parameters depends on the
mutually incoherent linear modes of the self-induced wavenumber of linear modes comprising the PCS. At one ex-
guide. Due to mutual incoherence, the total light intensity istreme, when the PCS forms a single-moded waveguide, the
a direct sum of the intensities of all excited modes. Thussoliton is coherent, its shape is symmetric, and it is described
mode beating, which is a feature of coherent interaction, i®y the sech function. This is the case of a single fundamental
absent. On the other hand, while the qualitative approach isoliton. At the other extreme, when the number of modes
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goes to infinity, the number of parameters which control the a1 6%
shape is also infinite. In this limit, the soliton effectively has i— 4+ = —+adn(l)y;=0, (1)
an arbitrary profile. gz 2 gx?

The interaction of incoherent and partially coherent soli-

tons is another interesting area of research which has onl here ; denotes théth component of the bean, is the

oefficient representing the strength of nonlineanitys the
Jransverse coordinate,is the coordinate along the direction

their collisions. Nevertheless, more research is needed to uﬁf propagation, and

derstand the interaction of PCSs in nonlinear media and to N

describe them analytically. on(h=> |2 2
In this paper, we give a complete description of PCSs i=1

using exact solutions of the generalized Manakov equations.

This allows us to investigate not only the properties of stalS the change in refractive index profile created by all inco-

tionary PCSs, but their collisions as well. The method for€rent components of the light beam. The medium is consid-
finding exact solutions of Schainger equations with special ered to have a slow response, so tha't the intensities con_trlb—
potentials was developed a long time ago by Kay and Moselte to the change of the refractive index but the relative
[25]. The starting point was to find potentials which have thePases between the components do not.

property of being reflectionless. It is important that these are Ve are interested in solutions of E) in the form of
solitonlike profiles at the same time. The multiplicity of such Partially coherent solitons. These are stationary waveguides
potentials has been related to the fact that these are seff€lf-induced by their own modes. The self-consistency con-
consistent potentials for a set of linear equations. Apart fronflition requires that these solutions be multisoliton com-

the self-consistency which is required for nonlinear objectsP!€x€s. Namely, these are nonlinear superpositions of funda-

partially coherent solitons are also objects which can be dgN€nta! solitons propagating in parallel and thus creating the
scribed by the techniques]. waveguide. This complementary view is important for a

)physical understanding of PCSs. Fortunately, @gis inte-
grable and, in principle, all of its solutions can be found in
analytical form. The mathematical treatment of the problem
@lso admits this complementarity: the equations can be writ-

It turns out that a refinement of the method developed b
Kay and Moses is suitable for finding solutions of a nonlin-
ear set of ordinary differential equations with cubic nonlin-

earities[26]. The self-consistency requirement relates linea X X i .
and cubic nonlinear equations. This gives us the chance " &ither as linear Schidinger equations for each mode or

linearize the nonlinear equations and to find solutions whici?S & Set of nonlinear equations. The latter allows us to treat
are multisoliton complexes. We use this method to find exacth® Solution for partially coherent solitons as a nonlinear su-
solutions of multiwave equations describing PCSs. AnotheP€rPosition ofN solitons related to each of thé compo-
generalization was made by Nogami and Waj&@. They nents, respectively. Let us consider these special solutions.
presented a method for constructing multisoliton solutions of

N coupled nonlinear Schdinger equation§NLSES. How- . PARTIALLY COHERENT SOLITONS

ever, some important features of linear equations have been Stationary solutions of Eq1) are given b

missed in[27]. An important point to realize here is that the y db) g y

set of functions considered by Nogami and Warke is trans- 1 K2
lationally invariant, thus giving an additionaN( 1) param- i(X,2) =—ui(x)exr< i ?IZ , 3
eters to the solutions which relate to our interest. This ap- Va

proach, with some modifications which add more parameters ith | funci q | ei | Then th
into the solution, allows us not only to find stationary multi- with real functionsu;(x) and real eigenvalud . Then the

component solutions for the set of generalized Manakove! of Eqs(1) reduces to the set of ODEs:

equations, but also exact solutions for colliding solitons. Us- 2u. N
ing this approach allows us to find solutions for collisions of —2 42| > u?lu;=Ku;. (4
self-induced waveguides. In particular, we have found exact ax? = I R

solutions for the process of collisions of PCSs. These can be

treated using the linear set of functional equations which This set of equations is also completely integrable for an
simultaneoulsy give solutions of generalized Manakov equadrbitrary set of real nondegenerdte Using the results of
tions. Importantly enough, the technique allows us to write[26,27, it can be shown that its solutions can be found from
solutions for arbitraryN using just one matrix equation. the linear set of algebraic equations:

N exp kixlex kix] ui(x)  uj(x)

+ = — .
Il. STATEMENT OF THE PROBLEM ;1 K+ K TR expkix], (5)
It has been shown that propagation of partially coherent . . )
wave packets in nonlinear media with a slow nonlinear reXhich can be written in a matrix form:
sponse can be represented by a set of equations for the mu-
tually incoherent components of the packét,3. For a Um(X) - e 6)
] il

L D;
beam (or beam$ consisting of N components, the corre- hm V2k,
sponding equations in media with Kerr-like nonlinearity
have the form where the terms in matri® are
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ejem some rough classification of these solutions is needed. The
Djm=djmt i (7)  simplest case is when the relative distances between the soli-
oo tons are larger than their widths. Then the solution set con-
and sists ofN well-separated solitons, each as a separate compo-
nent. When solitons are located close to each other, the
;= exp(kjx). (8)  solution is more complicated. All of these solutions are
] ] ] stable on propagation.
Henceforth, we will replace the; functions with more Below, we will investigate particular cases.
general ones, namely,
&= \/T@jexﬁkj;j), 9) IV. GENERAL (ARBITR,"\;ISYR I’—Z\IIC_BIZNVALUES ) SOLUTION

where x;=x—X; and the parameters; are shifts for each
fundamental soliton. These are parameters which nontriviall
contribute to the shape of the PCS. The new functions als
give a solution for each; . The new feature of the functions
e; here is the addition, not only of shifts;, but also of
arbitrary coefficients; . We could absorb theg; into thea;,

but we keep both the coefficients andx; as independent

ForN=1, we defineD;= coshkx,), so the fundamental

LSE soliton isu;(x) =k, /D,=k; sechk;X;). Let us con-
sider the cas®&=2. The matrix elements are given by

Dy,=1+a, exp(2K,X;),

parameters. The reason is that the coefficientdefine the D= 1+a, exp(2k,X,),
specific choice needed to achieve symmetry in the presenta-
tion of the solution and the; define fundamental soliton _ _2\/a1a2\/— - =
locations in the multisoliton complex. D12=D2= Kyt Kk, Kika exp(kyX; +kaXz).
We arrange the eigenvalues required in decreasing order
(k;>ks>k3>---) and define the positive coefficient The specific choice needed to achieve symmetry is
Cii= kit a,=a;=c _latk (12
b lki—kg| 2Tk,
It happens that the choice Choosing these special coefficiefir. (12)] and invert-
ing the matrixD gives, after some simple algebra,
a=|I c: (10
BN E 2k, /2, _
u;== D coshikyX,), (13
is the one which allows us to obtain the above-mentioned 2
symmetry, provided that ak;=0. Note that each;>0. For and
example, if there are four eigenvalues, then
kA,
=+
aZ:jgz C2j = C21C23C24= C12C23C24- U2== D, sinf(kyxy), (14
where

If, on the other hand, the;’s remain arbitrary parameters,
then the solution is asymmetric, but is represented in the
same compact and convenient form.

The solution components themselves can be written in

D= coshkyX; +KaX,) +C15C08HKi X —KoXp).  (15)

<’:]'his form of the solution is convenient for generalizations

simple form: whenN>2 and can be viewed as the standard form. Other
ui(x)=— \/Z_kiD-’-le- , (12) forms have been used in the presentation of this solution in
R Refs.[28—31] and in[24].
where the vectog; is also given by Eq(8). Although the The solution is asymmetric in general for arbitrémyand

inversion of the matrixD is a standard technique, it requires K> but becomes symmetric for the special choicelo;,
some effort to present the solution in a compact and simple=X>—X;=0. Thenu; andu, are, respectively, the even and
form. This is essentially what is done in the three followingodd modes of a symmetric self-induced waveguide. If
sections. kq/k,=2 with k, arbitrary, therD, reduces to 4 cos(ik,x)

As we can see from the above discussions, the solution ignd u§+ u% is simply 3k§ sech(k,x). Figure 1 shows the
actually a multiparameter family. It contairdé soliton pa- two modes as well as the intensity profile for two different
rametersk;, as well asN shifts, x; . Admitting translational separationsAx;,. Note that the intensity profile for the sym-
symmetry of the solution as a whole, we can define all shiftsnetric solution does not necessarily have to have a single
relative to one of them, so that the total solution then conmaximum. Wherk; andk, are close to each other, the so-
tains 2N—1 free parameters. These parameters give a hugation may show two peaks in the intensity profile. An ex-
diversity of PCS shapes. These solutions have been disimple of double peak structure of a symmetric PCS Wwith
cussed in the literature only partlt3,14]. This means that =2 is shown in Fig. 6.
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V. GENERAL SOLUTION FOR N=3

If N=3, the coefficients; are

a;=CyC13,

a=C12C23,

Note thata;=a,—az+1.

The explicit solution set for the arbitrary eigenvalug (

>k,>k3) case has the form

Up(X)=

where

a3=C13C>3- (16)

uy(x)= 2k|13\ia—1[003f( KXo+ KgXs)
+C3COSN(KpX, — KaX3) ],
Zk;@[smu kaX+ KaXa) + Crasinhkoxy — kaxa) ],
17
uz(x)= < \/—[COSK KiXq +KoX2)
—C12C08H Ky X; —KoX) ],
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FIG. 2. Transverse profiles and linear modes of the PCNfor
=3. Calculations usé&;=1.0, k,=0.5, k3=0.2. AX;5=AX;3=0
for symmetric solution(@) and Ax;,=1.5, Ax;3=—1.0 for asym-
metric solution(b).

D3(x) = costikyx; + kpxo+ Kaxs)

+ay coshkyX; — KpXo—KaXs)

+ 8, COSH{K Xy — KpX+ KaXa)

+ a3 coshKyX; + koXo—KsXs). (18

This solution describes both symmetric and asymmetric
functions. Note thau(x) is a positive definitelnodeless
function, and thus is the “fundamental” mode. Examples
giving two sets of parameters which lead to symmetric and
asymmetric solutions are given in FiggaRand 2Zb), respec-
tively. To make the solutions symmetric, we have to set all

=0. Even in this case, the solution is still quite general and
the intensity profile may have a complicated shape including
double and triple peak structures. There is a special subclass
of single peak symmetric solutions having =3ks;,k;
=2ks, ky=arbitrary. In this particular case we find thag
reduces tdD ;=32 cosli(ksx) and that the sum of the inten-
sities is=3_,u(x) =6k3 seclf(k3x). The components then
agree with those which will be found in Sec. VII.

VI. GENERAL SOLUTION FOR N=4

Our calculations allow us to present the explicit symmet-
ric solution set for the arbitrary eigenvalud,k,>kg
>k,) case:



PRE 59 PARTIALLY COHERENT SOLITONS OF VARIABILE . .. 6083

N—

Ul(X)_

[ cosh{ KoXo+ kaX3+kKyXg)

+ C24C34 COSHK X+ KaXa — KaXy)

+ C2aC34 COSH KoXo+ KgXy — KaXa)

+ CgC4 COSH KaX3+ KXy — KoXo) ],

ZJ_

Uz(X)—

[sinh( k1x1+ k3x3+ k4x4)

+C14C34 SINM(K1 X1 + KaXa — KyX4)

+ C13Caa SINN(KyX; + KXy — K3X3)

—C13C14SINN(K3X3+ KaXg—KiX1) ],

3\/—

U3(X)—

[cosK k1x1+ k2x2+ k4x4)

+C14C24 COSI Ky Xg + KXo — KgXg)

— C12C24COSHK X1 + KaXa —KoXy)

— 15014 COSH KXo+ KaXa— kyXy) ],

and

N—

U4(X)—

[sinh k1x1+ k2x2+ k3x3)

—clgczgsinrrkl?ﬁkz@—kg%)

—CqCp3Sinh( kaX, + k3;3_ KoX2)

— C12C13SINN(KyX5 + KaXz—KiX) ],

where

Da(X) = COSHKiX1+ KX+ KaXa+KeXy)

+a; coshkoXo+ KaXz+ KX —
+a, CoShkaXz+ KyXg+ KyX, —
+ a3 coshk,Xg+ Kyx; + KoXo—
+a, coshkyX; + KoXo+ KaXg—
+b; coshikyx; + KgXg— KoXo—
+ b, coshik X, + KoXp— KaXg—
+ b coshikyx; + KyXg— KoXo—

Here we have used the convenient definitiaee Eq.

(10]

81=C12C13C14, 82=C12C23C24,

and

83=C13C23C34, 4= C14C24C34,

KiXy)
KoX2)
kaXs)
KaXa)
KaXa)

KaXa)

KaXs).

19

(20

(21)
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FIG. 3. Transverse profiles and linear modes of the PCNfor
=4. Calculations usé&;=1.0, k,=0.6, k3=0.4, k;=0.2. AXq»
=AXq3=AX4,=0 for symmetric solutiora) and Ax;,=1.5, AX;3
=—1.5, Ax;4=0.5 for asymmetric solutioxb).

while

b1=0C12£14C23C34,  D2=C13C14C23C24,
(22)
D3=C12C13C24C34-

We note that, +az;=a,+a, andb,+bsz=b;+1. We have
used

Cij_ki_kju (23
wherei<j due to the ordering of the eigenvalues. Again,
u,(x) has no zeros.

This solution also describes both symmetric and asym-
metric PCSs. Figure 3 shows intensity profiles as well as the
mode structure of these solutions for two sets of parameters,
one of which leads to symmetij€ig. 3(a)] and the other one
to asymmetridFig. 3(b)] solutions. To make the solutions
symmetric, we have to set al]=0. The symmetric solution
still admits arbitraryk; and the actual shape of PCS can be
quite complicated with up to four peaks. For the special sub-
class of single peak symmetric solutions wkh=4k,,k,
=3k,,ky=2k,, k, arbitrary, we see thdd, reduces td,
=512 cosh%k,x) and that the sum of the intensities is
4 uZ(x)=10k3 secR(k,x).

Generalization of the solutions to aiz>4 is lengthy but
straightforward. In each of these three sectiond (
=1,2,3,4) the special subclass has determindny
= 1[2 coshkyx) NN+ D72 and the sum of intensities Bu?
=(N/2)(N+1)kﬁ, secl(kyX). In the next section, we will
further investigate these special solutions.
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VII. SYMMETRIC SOLUTIONS IN TERMS _
U,(X) = 15k, secl(ksx)tanh(ksx), 32
OF ASSOCIATED LEGENDRE FUNCTIONS 200 =15 (kax)tanftksx) (32

Suppose that the eigenvalues are equally spacedkj.e., 3k3
=Ny, ko= (N—1)ky, Up toky_,=2ky andky, whereky Us(x) =7 g Secltka)l1=5 tantf(ke)]. (33
is arbitrary. This is a special case of general solution found
above. This solution set is based on the modes of the “sechn general, the lowest-order function;(x), is proportional
squared” waveguid¢32]. The additional condition here is to sech(kyx) and is symmetricu;(x) is symmetric ifj is
that eachx; is zero. The above choices obey the conditionodd and is antisymmetric jfis even.
that the sum of the components equals a fixed multiple of the The condition of Eq(27) specifies the coefficients of the
function sech(kyx). Hence, each component must satisfy associated Legendre functions. The solution sefNer4 is

y KZN(N+1)secl(k
u’(x) + kEN(N+ 1)sech(kyx)un(x) Uy (x) = \/—55€Cﬁ (KaX), (34)

=k3(N—-n+1)%2u,(x), n=1,2,...N.

(24) 3 /35

uz(x)=§\/;k4 sechH(kyx)tanh(k x), (35)
Using ¢= tanhfyX) transforms each equation of this form

into the differential equation for the associated Legendre ke

functions, so the solutions can be written in terms of the Us(X)=— \/gsecﬁ(k4x)[7tanr?(k4x) 1, (36
associated Legendre functiofi32]:

Up(X) ==, PN """ (&) =+ c,P{ " U tani kyx) ], 5K,
U4(X) =——=seclikx)tanh k,x)[ 7 tantt (k,x)— 3].

(25 4()2\/ﬂ) ttkx)tanh(kax)[ (kgx)—3]

where thec, are constants. These functions can be written (37)

explicitly using[ 33] These solutions have been presented in Réf3,14] in re-

lation to PCSs.

. _ di
PL(Y)= sech(y)(fPN(é)) , €&=tanhly) (26)
dé¢ VIII. COLLISIONS

wherePy is the Legendre polynomial of ordét. To satisfy The most intriguing property of PCSs is their collision
the original equation set, we need behavior. Having analytical solutions to this interesting prob-
lem allows us to describe the changes which multisoliton
complexes undergo after collisions. It can be sh¢@if that
22 u2(x) =kEN(N+ 1)sech(kyx), (27 multisoliton solutions of Eq(1) are simultaneously solutions
of the linear set of algebraic functional equations:

ie., % exp(K! x; — ik} 22/ 2)exp(kix; +ik?2/2) ;(x,2)
S E ki +k* ;
22 PN HOP=KIN(N+1)(1-¢€7). (29 itk J2 Rek;

= L hix2) _explkyx; +ikiz/2) a8

Note that each intensi11y2n is a polynomial iné. Equating the m Ja '
coefficients of the polynomials then provides thg. Of

course each component can be independently multiplied bywhere the eigenvalues ake=\;+iV;, with \; being the
=1 as the index only involves intensities. Thus for2 we  amplitude andv;= tané; being the velocny of each soliton,
obtainc,= +c,= +k,/+/3. The solution with no nodes al- and with each< being related to the initial location of the
ways hasn=1, so the ordering agrees with that of the pre-soliton center. When dealing with two colliding PCSs, we
vious sections. Themi,(x) has one nodeus(x) has two have to choose a different value \éf for each PCS. Hence,

nodes, etc., and finallyiy(x) hasN—1 nodes. we have only two values of. This fact somewhat simplifies
For example, foN=2, we have the calculations.
Equations(38) can be written in a matrix form;
uz(x) = 3k, sechi(kyx), (29
D, ym(%2) € 39
Us(X)= \/§k2 seclik,x)tanh(kyx). (30 m \/;’
For theN=3 case, we havk, = 3ks, k,=2ks whileksis |\ here the Hermitian matri®
arbitrary; the solution is ’
3 B ejen
(%) = 310k sech(kzx), (31 Dim=dim ¥ e 49
4 i Pm
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has a real determinant and 1oL
e;= exp(kx; +ik?z/2). (41) - °t
The multisoliton solutions of the generalized Manakov | . .:si

Intensity

equations can be written in the form

2

-1
lpI: - _DII 2 Rek] e] . (42) E15—10 —_5 0 5 10 15
\/; " Spatial coordinate
out
The solution describes both the form of partially coherent ’ y =0
solitons of any order and their collisions. The best way to useE ) §
the solution(42) is numerical inversion of the matrix because * * = 1o % ————
the analytical expressions are not as simple as those fo Z %
PCSs. It is easy to show that fdi=1, the solution is a lecs 0 5 1015 §
soliton of a single nonlinear Schiimger equation. Other- .__%
wise, the solution is a superposition of single soliton compo- ~I15-10 5
nents.
Suppose we have two PCSs with componéhtsandN,,
respectively, such thai;+N,=N. Let us consider colli- FIG. 4. Collision of two symmetric PCSs, each consisting of

sions between them. The interpretation of a PCS as a multihree modes. The inset shows the input and output profiles of the
soliton complex suggests that collisions must reshape thenPCSs. Parameters chosen in this simulation\are 3.0, N,= 2.0,

In fact, theN eigenvaluesk; must be conserved during the A3=1.0, Ax;,=Ax;3=0 and the angle of collision is such that
collision, but theN—1 relative separationsiAx;;, must tané=0.3.

change. As a result, the shapes of PCSs do not have to be

preserved. Equation(42) allows us to calculate the fundamental solitons. We can think of this process as the
asymptotic values for fundamental solitons after the collisiorfransformation and a separation of a partially coherent beam
and, as a result, the change in their relative separations. ThiBto its coherent components. This idea could be used in
change can also be calculated using the Manakov rgg4jlt some applications where an initially incoherent wave packet
for pairwise collisions. All lateral shifts are additive quanti- ¢an be transformed into a number of coherent beams. Inter-
ties. Adding up the shifts of the individual collisions gives estingly enough, the larger the number of components, the
the total collision-induced shift for thigh soliton in the first ~ larger is their separation after the collision.

PCS: One more example of a soliton collision is shown in Fig.
N 5 5 6. This is a very special case of a collision between a funda-
P D \/(tanel— tand;) "+ (Ai+ Ay mental soliton and a PCS consisting of two modes. Evi-
N k=41 (tanf,— tanfy)2+(N;— A2 dently, in this case, the shape of the PCS solidoes not
changeafter the collision. This may seem to be rather sur-
i=1,2,3...N; (43) prising in the light of our earlier discussion concerning the

where #; and 6, are the angles of incidence of each of the

two PCSs. A similar expression can be written for soliton «/in

shifts in the second PCS. Clearly, these shifts are different,

for each soliton component in a given PCS. The net result |s. 20

PCS reshaping. We should also mention that, because of th .

integrability of the model, collisions are elastic and radiation -

waves are not created. The output consists only of the re:  spatisl ceordinate

shaped PCS, but it contains no radiation. sofout
Examples of collisions are presented in Figs. 4-6. The,

plots have been obtained using E42). A collision of two

PCSs, each consisting of three fundamental solitons, i< =

shown in Fig. 4. The main feature of the collisions is that the *

PCS remains and propagates as a stationary solution after tt  .aii cbordinate

collision, but its shape changes. As we explained above, the

reason for this is that thd partial amplitudes in the PCS do

not change during interactions, but the relative separations

Xi—X;, of the constituent solitons do change. The net result

is a restructuring of the PCS after a collision. ~ FIG. 5. Collision of two slightly asymmetric PCSs, each con-

A spectacular example of this rearrangement is shown iRjsting of six linear modes. The inset shows the input and output
Fig. 5. In this case, each PCS is initially slightly asymmetricprofiles of the PCS. Parameters chosen in this simulation\are
and consists of six linear modes. Because of the multiple=6.0, \,=5.0, A\3=4.0, A\;,=3.0, A\5=2.0, A\g=1.0, AX;,=0,
interactions, the shiftfEq. (43)] are large, and as a result Ax;;=-0.2, Ax;,=—0.1, Ax;==—0.3, Ax;e=—0.1 and the
each output beam is almost completely separated into its sixngle of collision is chosen such that s 0.3.

IS
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FIG. 6. Collision of PCS formed by two linear modes with a single soliton. The inset shows the initial and output intensity profiles of
both solitons. Parameters chosen in this simulatiornarel.0, A ,=0.65, Ax;,= 0 (for the PC$, A ;= 1.0 (for the single solitoh The angle
of collision is such that taf=0.1253. Note that the profile of the PCS does not change after the collision. This happens only at this specific
angle of collision when the two constituent solitons which form the PCS experience exactly the same lateral shift during collision so that the
final separation again i&x;,=0.

collisions of partially coherent solitons. However, the expla- IX. CONCLUSIONS

nation of this result is very simple. The partially coherent

soliton does not change its shape when all of its components We have found exact solutions of the generalized Mana-
experience exactly the same lateral shift during the collisionkov equations which describe partially coherent solitons and
This is possible because the lateral shift of each soliton is &eir collisions. The exact solutions allowed us to find sta-
nonlinear function of its amplitude and velocity. It can be tionary profiles of the spatial beams and predict the result of
shown that, for a situation like that in Fig. 6, there exists atheir collisions. We have found, analytically, the number of
collision angle for whichdx; = 6x,, and, consequently, the parameters that control the soliton shape. We have found
profile of the soliton remains unchanged. It should beprofiles which are asymmetric in general, but which become
stressed, though, that this is only possible for very specifisymmetric for certain values of the parameters. We have also
parameters of the collision. In the general case, the shape @und that collisions allow the profiles to remain stationary
a PCS changes dramatically. but change their shapes substantially.
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